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Abstract. Consider a structured matrix factorization model where one factor is restricted to have its columns
lying in the unit simplex. This simplex-structured matrix factorization (SSMF) model and the
associated factorization techniques have spurred much interest in research topics over different areas,
such as hyperspectral unmixing in remote sensing and topic discovery in machine learning, to name
a few. In this paper we develop a new theoretical SSMF framework whose idea is to study a
maximum volume ellipsoid inscribed in the convex hull of the data points. This maximum volume
inscribed ellipsoid (MVIE) idea has not been attempted in prior literature, and we show a sufficient
condition under which the MVIE framework guarantees exact recovery of the factors. The sufficient
recovery condition we show for MVIE is much more relaxed than that of separable nonnegative matrix
factorization (or pure-pixel search); coincidentally, it is also identical to that of minimum volume
enclosing simplex, which is known to be a powerful SSMF framework for nonseparable problem
instances. We also show that MVIE can be practically implemented by performing facet enumeration
and then by solving a convex optimization problem. The potential of the MVIE framework is
illustrated by numerical results.

Key words. maximum volume inscribed ellipsoid, simplex, structured matrix factorization, facet enumeration,
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1. Introduction. Consider the following problem. Let X ∈ RM×L be a given data matrix.
The data matrix X adheres to a low-rank model X = AS, where A ∈ RM×N ,S ∈ RN×L
with N ≤ min{M,L}. The goal is to recover A and S from X, with the aid of some known
or hypothesized structures with A and/or S. Such a problem is called structured matrix
factorization (SMF). In this paper we focus on a specific type of SMF called simplex-SMF
(SSMF), where the columns of S are assumed to lie in the unit simplex. SSMF has been found
to be elegant and powerful—as shown by more than a decade of research on hyperspectral
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unmixing (HU) in geoscience and remote sensing [8, 43] and more recently by research in
areas such as computer vision, machine learning, text mining, and optimization [30].

To describe SSMF and its underlying significance, it is necessary to mention two key
research topics from which important SSMF techniques were developed. The first is HU,
a main research topic in hyperspectral remote sensing. The task of HU is to decompose a
remotely sensed hyperspectral image into endmember spectral signatures and the correspond-
ing abundance maps, and SSMF plays the role of tackling such a decomposition. A widely
accepted assumption in HU is that S has columns lying in the unit simplex, or some data
preprocessing may be applied to make the aforementioned assumption happen [16, 44, 8, 30].
Among the many SSMF techniques established within the hyperspectral remote sensing com-
munity, we should mention pure-pixel search and minimum volume enclosing simplex (MVES)
[9, 46, 20, 14, 39, 40]—they are insightful and have recently been shown to be theoretically
sound [15, 31, 41].

The second topic that SSMF has shown an impact on is in topic discovery for text mining—
which has recently received much interest in machine learning. In this context, the so-called
separable NMF techniques have attracted considerable attention [2, 1, 48, 29, 24, 25, 22, 21].
Separable NMF falls into the scope of SSMF, as it also assumes that the columns of S lie in the
unit simplex. Separable NMF is very closely related to, if not exactly the same as, pure-pixel
search developed earlier in HU; the two use essentially the same model assumption. However,
separable NMF offers new twists not seen in traditional HU, such as convex optimization
solutions and robustness analysis in the noisy case; see the aforementioned references for
details. Some recent research also considers more relaxed techniques than separable NMF,
such as subset-separable NMF [28] and MVES [37]. Furthermore, it is worth noting that other
than HU and topic discovery, SSMF also finds applications in areas such as gene expression
data analysis, dynamic biomedical imaging, and analytical chemistry [50, 17, 42].

The beauty of the aforementioned SSMF frameworks lies in how they utilize the geomet-
ric structures of the SSMF model to pin down sufficient conditions for exact recovery and to
build algorithms with good recovery performance. We will shed some light on those geometric
insights when we review the problem in the next section, and we should note that recent
theoretical breakthroughs in SSMF have played a key role in understanding the fundamen-
tal nature of SSMF better and in designing better algorithms. Motivated by such exciting
advances, in this paper we explore a new theoretical direction for SSMF. Our idea is still
geometrical, but we use a different way, namely, by considering the maximum volume ellip-
soid inscribed in a data-constructed convex hull; the intuition will be elucidated later. As the
main contribution of this paper, we will show a sufficient condition under which this max-
imum volume inscribed ellipsoid (MVIE) framework achieves exact recovery. The sufficient
recovery condition we prove is arguably not hard to satisfy in practice and is much more
relaxed than that of pure-pixel search and separable NMF, and coincidentally it is the same
as that of MVES—which is a powerful SSMF framework for nonseparable problem instances.
In addition, our development will reveal that MVIE can be practically realized by solving a
facet enumeration problem and then by solving a convex optimization problem in the form of
log determinant maximization. This shows a very different flavor from the MVES framework
in which we are required to solve a nonconvex problem. While we should point out that
our MVIE solution may not be computed in polynomial time because facet enumeration isD
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NP-hard in general [5, 10], it still brings a new perspective to the SSMF problem. In particu-
lar, for instances where facet enumeration can be efficiently computed, the remaining problem
with MVIE is to solve a convex problem in which local minima are no longer an issue. We
will provide numerical results to show the potential of the MVIE framework.

The organization of this paper is as follows. We succinctly review the SSMF model and
some existing frameworks in section 2. The MVIE framework is described in section 3. Section
4 provides the proof of the main theoretical result in this paper. Section 5 develops an MVIE
algorithm and discusses computational issues. Numerical results are provided in section 6,
and we conclude this work in section 7.

Our notations are standard, and some of them are specified as follows. Boldface lowercase
and capital letters, like a and A, represent vectors and matrices, respectively (resp.); unless
specified, ai denotes the ith column of A; ei denotes a unit vector with [ei]i = 1 and [ei]j = 0
for j 6= i; 1 denotes an all-one vector; a ≥ 0 means that a is elementwise nonnegative; the
pseudoinverse of a given matrix A is denoted by A†; ‖ · ‖ denotes the Euclidean norm (for
both vectors and matrices); given a set C in Rn, aff C and conv C denote the affine hull and
convex hull of C, resp.; the dimension of a set C is denoted by dim C; int C, ri C,bd C, and
rbd C denote the interior, relative interior, boundary, and relative boundary of the given set
C, resp.; vol C denotes the volume of a measurable set C; Bn = {x ∈ Rn | ‖x‖ ≤ 1} denotes
the n-dimensional unit Euclidean-norm ball, or simply unit ball; Sn and Sn+ denote the sets
of all n× n symmetric and symmetric positive semidefinite matrices, resp.; and λmin(X) and
λmax(X) denote the smallest and largest eigenvalues of X, resp.

2. Data model and related work. In this section we describe the background of SSMF.

2.1. Model. As mentioned in the introduction, we consider a low-rank data model

X = AS,

where A ∈ RM×N ,S ∈ RN×L with N ≤ min{M,L}. The model can be written in a column-
by-column form as

xi = Asi, i = 1, . . . , L,

and we assume that
(A1) every si lies in the unit simplex, i.e., si ≥ 0,1Tsi = 1;
(A2) A has full column rank;
(A3) S = [ s1, . . . , sL ] has full row rank.

The above assumptions will be assumed without explicit mentioning in the following. The
problem is to recover A and S from the data points x1, . . . ,xL. Since si’s lie in the unit
simplex, we call this problem SSMF. We will focus only on the recovery of A; once A is
retrieved, the factor S can simply be recovered by solving the inverse problems

min
si≥0,1T si=1

‖xi −Asi‖2, i = 1, . . . , L.

SSMF finds many important applications as reviewed in the introduction, and one can find an
enormous amount of literature on a wide variety of techniques for SSMF or related problems
in remote sensing, signal processing, machine learning, computer vision, optimization, etc.
Here we selectively and concisely describe two mainstream frameworks.D
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Figure 1. Illustration of geometry of the points s1, . . . , sL. As an example we consider N = 3, and we view
s1, . . . , sL by projecting them onto the (2-dimensional) affine hull aff{e1, e2, e3}. The solid dark dots are the
si’s, and the solid line outlines the relative boundary of the unit simplex conv{e1, e2, e3}. (a) The pure-pixel
or separable case, in which e1, e2, e3 exist in some of si’s. (b) A no-pure-pixel or nonseparable case in which
γ > 1/

√
N − 1 holds. The dashed and solid circles correspond to the balls (1/

√
N − 1)BN and γBN , resp.

2.2. Pure-pixel search and separable NMF. The first framework to be reviewed is pure-
pixel search in HU in remote sensing [43] or separable NMF in machine learning [30]. Both
assume that for every k ∈ {1, . . . , N}, there exists an index ik ∈ {1, . . . , L} such that

sik = ek.

The above assumption is called the pure-pixel assumption in HU or separability assumption
in separable NMF. Figure 1(a) illustrates the geometry of s1, . . . , sL under the pure-pixel
assumption, where we see that the pure pixels si1 , . . . , siN are the vertices of the convex hull
conv{s1, . . . , sL}. This suggests that some kind of vertex search can lead to recovery of A—
the key insight of almost all algorithms in this framework. The beauty of pure-pixel search or
separable NMF is that under the pure-pixel assumption, SSMF can be accomplished either
via simple algorithms [1, 25] or via convex optimization [48, 29, 24, 22, 21]. Also, as shown in
the aforementioned references, some of these algorithms are supported by theoretical analyses
in terms of guarantees on recovery accuracies.

To give insights into how the geometry of the pure-pixel case can be utilized for SSMF, we
briefly describe a pure-pixel search framework based on maximum volume inscribed simplex
(MVIS) [46, 14]. The MVIS framework considers the following problem:

(2.1)
max

b1,...,bN∈RM
vol(conv{b1, . . . , bN})

s.t. conv{b1, . . . , bN} ⊆ conv{x1, . . . ,xL},

where we seek to find a simplex conv{b1, . . . , bN} such that it is inscribed in the data convex
hull conv{x1, . . . ,xL} and its volume is the maximum; see Figure 2 for an illustration. Intu-
itively, it seems true that the vertices of the MVIS, under the pure-pixel assumption, should
be a1, . . . ,aN . In fact, this can be shown to be valid.D
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Figure 2. Geometrical illustration of MVIS. The instance shown satisfies the pure-pixel assumption. The
way we visualize is similar to that in Figure 1, where we project the data points x1, . . . ,xL onto the affine
hull aff{a1,a2,a3}. The solid dark dots are the data points x1, . . . ,xL. The subfigure in (a) depicts a simplex
inscribed in the data convex hull conv{x1, . . . ,xL}. The outer triangle represents conv{x1, . . . ,xL}, while the
inner triangle represents the inscribed simplex. The subfigure in (b) depicts the MVIS. The vertices of the
MVIS, marked by “×,” are seen to be a1,a2,a3.

Theorem 1 ([14]). The optimal solution to the MVIS problem (2.1) is a1, . . . ,aN or their
permutations if and only if the pure-pixel assumption holds.

It should be noted that the above theorem also reveals that the MVIS cannot correctly recover
a1, . . . ,aN for no-pure-pixel or nonseparable problem instances. Readers are also referred to
[14] for details on how the MVIS problem is handled in practice.

2.3. MVES. While SSMF under the pure-pixel assumption gives many benefits, the as-
sumption of having pure pixels in the data is somewhat strong. A question that has previously
puzzled researchers is whether recovery of A is possible without the pure-pixel assumption.
This leads to another framework that hinges on MVES—a notion conceived first by Craig in
the HU context [20] and an idea that can be traced back to the 1980s [27]. The idea is to
solve an MVES problem,

(2.2)
min

b1,...,bN∈RM
vol(conv{b1, . . . , bN})

s.t. xi ∈ conv{b1, . . . , bN}, i = 1, . . . , L,

or its variants (see, e.g., [7, 23]). As can be seen in (2.2) and as illustrated in Figure 3, the
goal is to find a simplex that encloses the data points and has the minimum volume. The
vertices of the MVES, which is the solution b1, . . . , bN to problem (2.2), then serves as the
estimate of A. MVES is more commonly seen in HU, and most recently the idea has made its
way to machine learning [37, 26]. Empirically it has been observed that MVES can achieve
good recovery accuracies in the absence of pure pixels, and MVES-based algorithms are often
regarded as tools for resolving instances of “heavily mixed pixels” in HU [45]. Recently, the
mystery of whether MVES can provide exact recovery theoretically has been answered.
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Figure 3. Geometrical illustration of MVES. The instance shown does not satisfy the pure-pixel assumption.
The way we visualize is the same as that in Figure 2. The solid dark dots are the data points x1, . . . ,xL, the
dashed line outlines where is conv{a1,a2,a3}, the solid line inside conv{a1,a2,a3} shows the relative boundary
of the data convex hull conv{x1, . . . ,xL}, and the solid line outside conv{a1,a2,a3} shows the relative boundary
of a data-enclosing simplex conv{b1, b2, b3}. From this illustration it seems likely that the minimum volume
data-enclosing simplex would be conv{a1,a2,a3} itself.

Theorem 2 ([41]). Define

(2.3) γ = max {r ≤ 1 | (conv{e1, . . . , eN}) ∩ (rBN ) ⊆ conv{s1, . . . , sL}} ,

which is called the uniform pixel purity level. If N ≥ 3 and

γ >
1√
N − 1

,

then the optimal solution to the MVES problem (2.2) must be given by a1, . . . ,aN or their
permutations.

The uniform pixel purity level has elegant geometric interpretations. To give readers some
feeling, Figure 1(b) illustrates an instance for which γ > 1/

√
N − 1 holds but the pure-pixel

assumption does not. Also, note that γ = 1 corresponds to the pure-pixel case. Interested
readers are referred to [41] for more explanations of γ and to [37, 26, 23] for concurrent
and more recent results for theoretical MVES recovery. Loosely speaking, the premise in
Theorem 2 should have a high probability to satisfy in practice as long as the data points are
reasonably well spread.

While MVES is appealing in its recovery guarantees, the pursuit of SSMF frameworks is
arguably not over. The MVES problem (2.2) is nonconvex and NP-hard in general [47]. Our
numerical experience is that the convergence of an MVES algorithm to a good result could
depend on the starting point. Hence, it is interesting to study alternative frameworks that
can also go beyond the pure-pixel or separability case and can bring new perspective to the
no-pure-pixel case—and this is the motivation for our development of the MVIE framework
in the next section.D
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3. MVIE. Let us first describe some facts and our notations with ellipsoids. Any n-
dimensional ellipsoid E in Rm may be characterized as

E = E(F , c) , {Fα+ c | ‖α‖ ≤ 1}

for some full column rank F ∈ Rm×n and c ∈ Rm. The volume of an n-dimensional ellipsoid
E(F , c) is given by

vol(E(F , c)) = ρn(det(F TF ))1/2,

where ρn denotes the volume of the n-dimensional unit ball; see, for example, [35].
We are interested in an MVIE problem whose aim is to find a maximum volume ellipsoid

contained in the convex hull of the data points. For convenience, denote

X = conv{x1, . . . ,xL}

to be the convex hull of the data points. As a basic result one can show that

(3.1) dimX = dim(aff{x1, . . . ,xL}) = dim(aff{a1, . . . ,aN}) = N − 1;

note that the second equality is due to aff{x1, . . . ,xL} = aff{a1, . . . ,aN} under (A3), which
was proved in [16, 14]. Hence, we also restrict the dimension of the ellipsoid to be N − 1, and
the MVIE problem is formulated as

(3.2)
max
F ,c

det(F TF )

s.t. E(F , c) ⊆ X ,

where F ∈ RM×(N−1), c ∈ RM .1 It is interesting to note that the MVIE formulation above
is similar to the MVIS formulation (2.1); the inscribed simplex in MVIS is replaced by an
ellipsoid. However, the pursuit of MVIE leads to significant differences from that of MVIS. To
see it, consider the illustration in Figure 4. We observe that the MVIE and the data convex
hull X have contact points on their relative boundaries. Since those contact points are also on
the “appropriate” facets of conv{a1, . . . ,aN} (for the instance in Figure 4), they may provide
clues on how to recover a1, . . . ,aN .

The following theorem describes the main result of this paper.

Theorem 3. Suppose that N ≥ 3 and γ > 1/
√
N − 1. The MVIE, or the optimal ellipsoid

of problem (3.2), is uniquely given by

(3.3) E? = E
(

1√
N(N−1)

AC, ā

)
,

where C ∈ RN×(N−1) is any semiunitary matrix such that CT1 = 0 and ā = 1
N

∑N
i=1 ai.

Also, there are exactly N contact points between E? and rbd X , that is,

(3.4) E? ∩ (rbd X ) = {q1, . . . , qN},
1Notice that we do not constrain F to be of full column rank in (3.2) for the following reasons. First, it can

be verified that a feasible E(F , c) with F being of full column rank always exists if dimX = N − 1. Second, if
F does not have full column rank, then det(F TF ) = 0.D
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Figure 4. Geometrical illustration of MVIE. The instance shown does not satisfy the pure-pixel assumption.
The way we visualize is the same as that in Figure 2. In the subfigure (a), the circle depicts an ellipsoid inscribed
in the data convex hull conv{x1, . . . ,xL}. The subfigure in (b) shows a possible scenario for which the MVIE
has contact points with conv{x1, . . . ,xL}; those contact points are marked by “×.”

and those contact points are given by

(3.5) qi =
1

N − 1

∑
j 6=i
aj .

Theorem 3 gives a vital implication on a condition under which we can leverage MVIE to
exactly recover A. Consider the following corollary as a direct consequence of Theorem 3.

Corollary 1. Under the premises of N ≥ 3 and γ > 1/
√
N − 1, we can exactly recover A

by solving the MVIE problem (3.2), finding the contact points qi’s in (3.4), and reconstructing
ai’s either via

ai = N ā− (N − 1)qi, i = 1, . . . , N,

or via

ai =
N∑
j=1

qj − (N − 1)qi, i = 1, . . . , N.

Hence, we have shown a new and provably correct SSMF framework via MVIE. Coincidentally
and beautifully, the sufficient exact recovery condition of this MVIE framework is the same
as that of the MVES framework (cf. Theorem 2)—which suggests that MVIE should be as
powerful as MVES.

In the next section we will describe the proof of Theorem 3. We will also develop an
algorithm for implementing MVIE and then testing it through numerical experiments; these
will be considered in sections 5 and 6.

4. Proof of Theorem 3. Before we give the full proof of Theorem 3, we should briefly
mention the insight behind it. At the heart of our proof is John’s theorem for MVIE charac-
terization, which is described as follows.

Theorem 4 ([36]). Let T ⊂ Rn be a compact convex set with nonempty interior. The
following two statements are equivalent.D
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MVIE: A NEW SSMF FRAMEWORK 1659

(a) The n-dimensional ellipsoid of maximum volume contained in T is uniquely given
by Bn.

(b) Bn ⊆ T , and there exist points u1, . . . ,ur ∈ Bn ∩ (bd T ), with r ≥ n+ 1, such that

r∑
i=1

λiui = 0,
r∑
i=1

λiuiu
T
i = I,

for some λ1, . . . , λr > 0.

There are, however, challenges to be overcome. First, John’s theorem cannot be directly
applied to our MVIE problem (3.2) because X does not have an interior (although X has
nonempty relative interior). Second, John’s theorem does not tell us how to identify the
contact points ui’s—which we will have to find out. Third, our result in Theorem 3 is stronger
in the sense that we characterize the set of all the contact points, and this will require some
extra work.

The proof of Theorem 3 is divided into three parts and described in the following subsec-
tions. Before we proceed, let us define some specific notations that will be used throughout
the proof. We will denote an affine set by

A(Φ, b) , {Φα+ b | α ∈ Rn}

for some Φ ∈ Rm×n, b ∈ Rn. In fact, any affine set A in Rm of dimA = n may be represented
by A = A(Φ, b) for some full column rank Φ ∈ Rm×n and b ∈ Rm. Also, we let C ∈ RN×(N−1)

denote any matrix such that

(4.1) CTC = I, CT1 = 0,

and we let

(4.2) d = 1
N 1 ∈ RN .

4.1. Dimensionality reduction. Our first task is to establish an equivalent MVIE trans-
formation result.

Proposition 1. Represent the affine hull aff{x1, . . . ,xL} by

(4.3) aff{x1, . . . ,xL} = A(Φ, b)

for some full column rank Φ ∈ RM×(N−1) and b ∈ RM . Let

x′i = Φ†(xi − b), i = 1, . . . , L, X ′ = conv{x′1, . . . ,x′L} ⊂ RN−1.

The MVIE problem (3.2) is equivalent to

(4.4)
max
F ′,c′

|det(F ′)|2

s.t. E(F ′, c′) ⊆ X ′,

where F ′ ∈ R(N−1)×(N−1), c′ ∈ RN−1. In particular, the following properties hold:D
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1660 C.-H. LIN, R. WU, W.-K. MA, C.-Y. CHI, AND Y. WANG

(a) If (F , c) is a feasible (resp., optimal) solution to problem (3.2), then

(4.5) (F ′, c′) = (Φ†F ,Φ†(c− b))

is a feasible (resp., optimal) solution to problem (4.4).
(b) If (F ,′ c′) is a feasible (resp., optimal) solution to problem (4.4), then

(4.6) (F , c) = (ΦF ′,Φc′ + b)

is a feasible (resp., optimal) solution to problem (3.2).
(c) The set X ′ has nonempty interior.
(d) Let (F , c) be a feasible solution to problem (3.2), and let (F ′, c′) be given by (4.5),

or, let (F ′, c′) be a feasible solution to problem (4.4), and let (F , c) be given by (4.6).
Denote E = E(F , c) and E ′ = E(F ′, c′). Then

q ∈ E ∩ (rbd X ) =⇒ q′ = Φ†(q − b) ∈ E ′ ∩ (bd X ′),
q′ ∈ E ′ ∩ (bd X ′) =⇒ q = Φq′ + b ∈ E ∩ (rbd X ).

The above result is a dimensionality reduction (DR) result where we equivalently transform
the MVIE problem from a higher-dimension space (specifically, RM ) to a lower-dimensional
space (specifically, RN−1). It has the same flavor as the so-called affine set fitting result in
[16, 14], which is also identical to principal component analysis. This DR result will be used
again when we develop an algorithm for MVIE in later sections. We relegate the proof of
Proposition 1 to Appendix A.

Now, we construct an equivalent MVIE problem via a specific choice of (Φ, b). It has been
shown that under (A3),

(4.7) aff{x1, . . . ,xL} = aff{a1, . . . ,aN};

see [16, 14]. Also, consider the following fact.

Fact 1 ([41]). The affine hull of all unit vectors e1, . . . , eN in RN can be characterized as

aff{e1, . . . , eN} = A(C,d),

where C and d have been defined in (4.1) and (4.2), resp.

Applying Fact 1 to (4.7) yields

aff{x1, . . . ,xL} = A(AC,Ad).

By choosing (Φ, b) = (AC,Ad) and applying Proposition 1, we obtain an equivalent MVIE
problem in (4.4) that has

xi = ACx′i +Ad, i = 1, . . . , L.

The above equation can be simplified. By plugging the model xi = Asi into the above
equation, we get si = Cx′i + d, and using the properties CTC = I and CTd = 0, we furtherD
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get x′i = CTsi. By changing the notation X ′ to S ′ and x′i to s′i, we rewrite the equivalent
MVIE problem (4.4) as

(4.8)
max
F ′,c′

|det(F ′)|2

s.t. E(F ′, c′) ⊆ S ′,

where we again have F ′ ∈ R(N−1)×(N−1), c′ ∈ RN−1, and S ′ is given by S ′ = conv{s′1, . . . , s′L}
with

s′i = CTsi, i = 1, . . . , L.

Furthermore, note that S ′ has nonempty interior; cf. statement (c) of Proposition 1.

4.2. Solving the MVIE via John’s theorem. Next, we apply John’s theorem to the equiv-
alent MVIE problem in (4.8). It would be helpful to first describe the outline of our proof.
For convenience, let

β =
1√

N(N − 1)

and

q′i =
1

N − 1

∑
j 6=i
CTej , i = 1, . . . , N.

We will show that the optimal ellipsoid to problem (4.8) is uniquely given by βBN−1 and that
q′1, . . . , q

′
N lie in (βBN−1) ∩ (bd S ′); the underlying premise is γ ≥ 1/

√
N − 1. Subsequently,

by the equivalence properties in Proposition 1 and by βBN−1 = E(βI,0), we have

(4.9) E(βAC,Ad) = E?

as the optimal ellipsoid of our original MVIE problem (3.2); also, we have

qi = ACq′i +Ad ∈ E? ∩ (rbd X ), i = 1, . . . , N.

Furthermore, it will be shown that qi can be reduced to qi = 1
N−1

∑
j 6=i aj . Hence, except for

the claim {q1, . . . , qN} = E? ∩ (rbd X ), we see all the results in Theorem 3.
Now, we show the more detailed parts of the proof.

Step 1. Let us assume βBN−1 ⊆ S ′ and q′i ∈ (βBN−1) ∩ (bd S ′) for all i; we will come
back to this later. The aim here is to verify that βBN−1 and q′1, . . . , q

′
N satisfy the MVIE

conditions in John’s theorem. Since CT1 = 0, we can simplify q′i to

q′i =
1

N − 1
CT (1− ei) = − 1

N − 1
CTei.

Consequently, one can verify that

(N − 1)2
N∑
i=1

q′i = −(N − 1)CT1 = 0,

(N − 1)2
N∑
i=1

(q′i)(q
′
i)
T = CT

(
N∑
i=1

eie
T
i

)
C = CT IC = I,

D
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which are the MVIE conditions of John’s theorem; see statement (b) of Theorem 4, with
ui = q′i, λi = (N − 1)2, i = 1, . . . , N . Hence, βBN−1 is the unique maximum volume ellipsoid
contained in S ′.

Step 2. We verify that βBN−1 ⊆ S ′ if γ ≥ 1/
√
N − 1. The verification requires another

equivalent MVIE problem, given as:

(4.10)
max
F ,c

det(F TF )

s.t. E(F , c) ⊆ S,

where
S = conv{s1, . . . , sL},

and with a slight abuse of notations we redefine F ∈ RN×(N−1), c ∈ RN . Using the same
result in the previous subsection, it can be readily shown that problem (4.10) is equivalent to
problem (4.8) under (Φ, b) = (C,d). Let

E = E (βC,d) , E ′ = E (βI,0) = βBN−1.

From statement (a) of Proposition 1, we have E ⊆ S =⇒ E ′ ⊆ S ′; thus, we turn to proving
E ⊆ S. Recall from the definition of γ in (2.3) that

(4.11) (conv{e1, . . . , eN}) ∩ (γBN ) ⊆ S.

For γ ≥ 1/
√
N − 1, (4.11) implies

(4.12) (conv{e1, . . . , eN}) ∩
(

1√
N−1
BN
)
⊆ S.

Consider the following fact.

Fact 2 ([41]). The following results hold:

(a) (aff{e1, . . . , eN}) ∩ (rBN ) = E(
√
r2 − 1

NC,d) for r ≥ 1√
N

.

(b) (conv{e1, . . . , eN}) ∩ (rBN ) = aff{e1, . . . , eN} ∩ (rBN ) for 1√
N
< r ≤ 1√

N−1
.

Applying Fact 2 to the left-hand side of (4.12) yields

(4.13) (conv{e1, . . . , eN}) ∩
(

1√
N − 1

BN
)

= E (βC,d) .

Hence, we have E = E(βC,d) ⊆ S, which implies that βBN−1 = E ′ ⊆ S ′.
Step 3. We verify that q′i ∈ (βBN−1) ∩ (bd S ′) for all i. Again, the verification is based

on the equivalence of problem (4.10) and problem (4.8) used in Step 2. Let

(4.14) wi =
1

N − 1

∑
j 6=i
ej , i = 1, . . . , N,

and let w′i = CT (wi − d) for all i. By statement (d) of Proposition 1, we have wi ∈ E ∩
(rbd S) =⇒ w′i ∈ E ′∩(bd S ′). Also, owing toCTd= 0, we see thatw′i =CT ( 1

N−1

∑
j 6=i ej) = q′i.D
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Hence, we can focus on showing wi ∈ E ∩ (rbd S). Since wi ∈ aff{e1, . . . , eN} = A(C,d)
(cf. Fact 1), we can represent wi by

(4.15) wi = Cw′i + d.

Using (4.14), CTC = I, and CTd = 0, one can verify that

1

N − 1
= ‖wi‖2 = ‖Cw′i‖2 + ‖d‖2 = ‖w′i‖2 +

1

N
,

which is equivalent to ‖w′i‖ = β. We thus have wi ∈ E(βC,d) = E . Since E ⊆ S (which is
shown in Step 2), we also have wi ∈ S. The vector wi has [wi]i = 0, and as a result wi must
not lie in ri S. It follows that wi ∈ rbd S.

Step 4. Steps 1–3 essentially prove all the key components of the big-picture proof de-
scribed in the beginning of this subsection. In this last step, we show the remaining result,
namely, qi = ACq′i +Ad = 1

N−1

∑
j 6=i aj . In Step 3, we see from w′i = q′i and (4.14)–(4.15)

that Cq′i + d = 1
N−1

∑
j 6=i ej . Plugging this result into qi yields the desired result.

4.3. On the number of contact points. Our final task is to prove that {q1, . . . , qN} =
E? ∩ (rbd X ); note that the previous proof allows us only to say that {q1, . . . , qN} ⊆ E? ∩
(rbd X ). We use the equivalent MVIE problem (4.10) to help us solve the problem. Again,
let E = E(βC,d) for convenience. The crux is to show that

(4.16) w ∈ E ∩ (rbd S) =⇒ w = wi for some i ∈ {1, . . . , N},

where wi’s have been defined in (4.14); the premise is γ > 1/
√
N − 1. By following the

above development, especially, the equivalence results of problems (4.10) and (4.8) and those
of problems (3.2) and (4.8), it can be verified that (4.16) is equivalent to

q ∈ E? ∩ (rbd X ) =⇒ q = qi for some i ∈ {1, . . . , N},

which completes the proof of {q1, . . . , qN} = E? ∩ (rbd X ). We describe the proof of (4.16)
as follows.

Step 1. First, we show the following implication under γ > 1/
√
N − 1:

(4.17) w ∈ E ∩ (rbd S) =⇒ w ∈ E ∩ (rbd(conv{e1, . . . , eN})).

The proof is as follows. Let

R(γ) = (conv{e1, . . . , eN}) ∩ (γBN ),

and note from (4.11)–(4.13) that

(4.18) E ⊆ R(γ) ⊆ S

holds for γ ≥ 1/
√
N − 1. It can be seen or easily verified from the previous development that

(4.19) aff E = aff S = aff(conv{e1, . . . , eN}) = aff{e1, . . . , eN} = A(C,d).D
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Also, by applying (4.19) to (4.18), we get aff(R(γ)) = A(C,d). It is then immediate that

(4.20) ri(R(γ)) ⊆ ri S.
From (4.18)–(4.20) we observe that

(4.21) w ∈ E , w ∈ rbd S =⇒ w ∈ R(γ), w /∈ ri(R(γ)) =⇒ w ∈ rbd(R(γ)).

Let us further examine the right-hand side of the above equation. For γ > 1/
√
N , we can

write

R(γ) = (conv{e1, . . . , eN}) ∩ (aff{e1, . . . , eN} ∩ (γBN ))

= (conv{e1, . . . , eN}) ∩
(
E
(√

γ2 − 1
NC,d

))
,

where the second equality is due to Fact 2(a). It follows that

w ∈ rbd(R(γ)) =⇒ w ∈ rbd(conv{e1, . . . , eN}) or w ∈ rbd

(
E
(√

γ2 − 1
NC,d

))
.

(4.22)

However, for γ > 1/
√
N − 1, we have

(4.23) w ∈ E = E(βC,d) = E
(√

1
N−1 − 1

NC,d

)
=⇒ w /∈ rbd

(
E
(√

γ2 − 1
NC,d

))
.

By combining (4.21), (4.22), and (4.23), we obtain (4.17).

Step 2. Second, we show that

(4.24) w ∈ E ∩ (rbd(conv{e1, . . . , eN})) =⇒ w = wi for some i ∈ {1, . . . , N}.
The proof is as follows. The relative boundary of conv{e1, . . . , eN} can be expressed as

rbd(conv{e1, . . . , eN}) =
N⋃
i=1

Fi,

where

(4.25) Fi = {s ∈ RN | s ≥ 0,1Ts = 1, si = 0}.
It follows that

w ∈ E ∩ (rbd(conv{e1, . . . , eN})) =⇒ w ∈ E ∩ Fi for some i ∈ {1, . . . , N}.
Recall wi = 1

N−1

∑
j 6=i ej . By the Cauchy–Schwartz inequality, any w ∈ Fi must satisfy

‖w‖ =
√
N − 1‖wi‖‖w‖ ≥

√
N − 1wT

i w =
1√
N − 1

.

Also, the above equality holds (for w ∈ Fi) if and only if w = wi. On the other hand, it can
be verified that any w ∈ E must satisfy ‖w‖ ≤ 1/

√
N − 1; see (4.18). Hence, any w ∈ E ∩ Fi

must be given by w = wi, and applying this result to (4.25) leads to (4.24).

Finally, by (4.17) and (4.24), the desired result in (4.16) is obtained.D
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5. An SSMF algorithm induced from MVIE. In this section we use the MVIE framework
developed in the previous sections to derive an SSMF algorithm.

We follow the recovery procedure in Corollary 1, wherein the main problem is to solve
the MVIE problem in (3.2). To solve problem (3.2), we first consider DR. The required tool
has been built in Proposition 1: If we can find a 2-tuple (Φ, b) ∈ RM×(N−1) × RM such that
aff{x1, . . . ,xL} = A(Φ, b), then the MVIE problem (3.2) can be equivalently transformed to
problem (4.4), restated here for convenience as follows:

(5.1)
max
F ′,c′

| det(F ′)|2

s.t. E(F ′, c′) ⊆ X ′ = conv{x′1, . . . ,x′L},

where (F ′, c′) ∈ R(N−1)×(N−1)×RN−1, and x′i = Φ†(xi−b), i = 1, . . . , L are the dimensionality-
reduced data points. Specifically, recall that if (F ′, c′) is an optimal solution to prob-
lem (5.1), then (F , c) = (ΦF ′,Φc′ + b) is an optimal solution to problem (3.2); if q′ ∈
(E(F ′, c′)) ∩ (bd X ′), then q = Φq′ + b ∈ (E(F , c)) ∩ (rbd X ) is one of the desired contact
points in (3.5). The problem is to find one such (Φ, b) from the data. According to [14],
we can extract (Φ, b) from the data using affine set fitting; it is given by b = 1

L

∑L
n=1 xn

and by having columns of Φ to be first N − 1 principal left-singular vectors of the matrix
[ x1 − b, . . . ,xL − b ].

Next, we show how problem (5.1) can be recast as a convex problem. To do so, we consider
representing X ′ in polyhedral form, that is,

X ′ =
K⋂
i=1

{x | gTi x ≤ hi},

for some positive integer K and for some (gi, hi) ∈ RN−1 × R, i = 1, . . . ,K with ‖gi‖ = 1
without loss of generality. Such a conversion is called facet enumeration in the literature
[12], and in practice (gi, hi)

K
i=1 may be obtained by calling an off-the-shelf algorithm such as

QuickHull [4]. Using the polyhedral representation of X ′, problem (5.1) can be reformulated
as a log determinant maximization problem subject to second-order cone (SOC) constraints
[11]. Without loss of generality, assume that F ′ is symmetric and positive semidefinite. By
noting det(F ′) ≥ 0 and the equivalence

E(F ′, c′) ⊆
K⋂
i=1

{x | gTi xi ≤ hi} ⇐⇒ sup
‖α‖≤1

gTi (F ′α+ c′) ≤ hi, i = 1, . . . ,K,

⇐⇒ ‖F ′gi‖+ gTi c
′ ≤ hi, i = 1, . . . ,K(5.2)

(see, e.g., [11]), problem (5.1) can be rewritten as

(5.3)

max
F ′∈SN−1

+ ,c′∈RN−1
log det(F ′)

s.t. ‖F ′gi‖+ gTi c
′ ≤ hi, i = 1, . . . ,K.

The above problem is convex and can be readily solved by calling general-purpose convex
optimization software such as CVX [33]. We also custom-derive a fast first-order algorithm
for handling problem (5.3). The algorithm is described in Appendix B.D
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Algorithm 1. An MVIE Algorithm for Blind Recovery of A.

1: Given a data matrix X ∈ RM×L and a model order N ≤ min{M,L}.
2: Obtain the dimension-reduced data x′i = Φ†(xi−b), i = 1, . . . , L, where (Φ, b) is obtained

by affine set fitting [14].
3: Use QuickHull [4] or some other off-the-shelf algorithm to enumerate the facets of

conv{x′1, . . . ,x′L}, i.e., find (gi, hi)
K
i=1 such that conv{x′1, . . . ,x′L} = ∩Ki=1{x | gTi x ≤ hi}.

4: Solve problem (5.3) either via CVX [33] or via Algorithm 2, and store the optimal solution
obtained as (F ′, c′).

5: Compute the contact points

{q′1, . . . , q′N} =

{
q′ = F ′

(
F ′gi
‖F ′gi‖

)
+c′

∣∣∣∣ i ∈ {1, . . . ,K} is such that ‖F ′gi‖+ gTi c
′ = hi

}
.

6: Compute the contact points qi = Φq′i + b, i = 1, . . . , N .
7: Reconstruct ai =

∑N
j=1 qj − (N − 1)qi, i = 1, . . . , N .

8: Output A = [ a1, . . . ,aN ].

The aspect of MVIE optimization is complete. However, we should also mention how we
obtain the contact points q1, . . . , qN in (3.4)–(3.5) as they play the main role in reconstructing
a1, . . . ,aN (cf. Corollary 1). It can be further shown from (5.2) that

q′ ∈ (E(F ′, c′)) ∩ (bd X ′) ⇐⇒
q′ = F ′

(
F ′gi
‖F ′gi‖

)
+ c′, ‖F ′gi‖+ gTi c

′ = hi,

for some i = 1, . . . ,K.

(5.4)

Hence, after solving problem (5.3), we can use the condition on the right-hand side of (5.4) to
identify the collection of all contact points q′1, . . . , q

′
N . Then, we use the relation qi = Φq′i +b

to construct q1, . . . , qN . Our MVIE algorithm is summarized in Algorithm 1.
Some discussions are as follows.
1. As can be seen, the two key steps for the proposed MVIE algorithm are to perform facet

enumeration and to solve a convex optimization problem. Let us first discuss issues
arising from facet enumeration. Facet enumeration is a well-studied problem in the
context of computational geometry [12, 13], and one can find off-the-shelf algorithms,
such as QuickHull [4] and VERT2CON,2 to perform facet enumeration. However, it is
important to note that facet enumeration is known to be NP-hard in general [5, 10].
Such computational intractability was identified by finding a purposely constructed
problem instance [3], which is reminiscent of the carefully constructed Klee–Minty cube
for showing the worst-case complexity of the simplex method for linear programming
[38]. In practice, one would argue that such worst-case instances do not happen too
often. Moreover, the facet enumeration problem is polynomial-time solvable under
certain sufficient conditions, such as the so-called balance condition [4, Theorem 3.2]
and the case of N = 3 [19].

2https://www.mathworks.com/matlabcentral/fileexchange/7895-vert2con-vertices-to-constraints.D
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2. While the above discussion suggests that MVIE may not be solved in polynomial time,
it is based on convex optimization and thus does not suffer from local minima. In
comparison, MVES—which enjoys the same sufficient recovery condition as MVIE—
may have such issues, as we will see in the numerical results in the next section.

3. We should also discuss a minor issue, namely, that of finding the contact points in step
5 of Algorithm 1. In practice, there may be numerical errors with the MVIE solution,
e.g., due to finite number of iterations or approximations involved in the algorithm.
Also, data in reality are often noisy. Those errors may result in identification of more
than N contact points, as our experience suggests. When such instances happen, we
mend the problem by clustering the obtained contact points into N points by standard
k-means clustering.

6. Numerical simulation and discussion. In this section we use numerical simulations to
show the viability of the MVIE framework.

6.1. Simulation settings. The application scenario is HU in remote sensing. The data
matrix X = AS is synthetically generated by following the procedure in [14]. Specifically,
the columns a1, . . . ,aN of A are randomly selected from a library of endmember spectral
signatures called the U.S. Geological Survey library [18]. The columns s1, . . . , sL of S are
generated by the following way: We generate a large pool of Dirichlet distributed random
vectors with concentration parameter 1/N and then choose s1, . . . , sL as a subset of those
random vectors whose Euclidean norms are less than or equal to a prespecified number r.
The above procedure numerically controls the pixel purity in accordance with r, and therefore
we will call r the numerically controlled pixel purity level in the sequel. Note that r is not
the uniform pixel purity level γ in (2.3), although r should closely approximate γ when L is
large. Also, we should mention that it is not feasible to control the pixel purity in accordance
with γ in our numerical experiments because verifying the value of γ is computationally
intractable [34] (see also [41]). We set M = 224 and L = 1000.

Our main interest is to numerically verify whether the MVIE framework can indeed lead
to exact recovery and to examine to what extent the numerical recovery results match with
our theoretical claim in Theorem 3. We measure the recovery performance by the root-mean-
square (RMS) angle error

φ = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aTi âπi

‖ai‖ · ‖âπi‖

)]2

,

where ΠN denotes the set of all permutations of {1, . . . , N} and Â denotes an estimate ofA by
an algorithm. We use 200 independently generated realizations to evaluate the average RMS
angle errors. Two versions of the MVIE implementations in Algorithm 1 are considered. The
first calls the general-purpose convex optimization software CVX to solve the MVIE problem,
while the second applies the custom-derived algorithm in Algorithm 2 (with ρ = 150, ε =
2.22× 10−16, α = 2, β = 0.6) to solve the MVIE problem (approximately). For convenience,
the former and latter will be called “MVIE-CVX” and “MVIE-FPGM,” resp. We also tested
some other algorithms for benchmarking, namely, the successive projection algorithm (SPA)
[31], SISAL [7], and MVES [14]. SPA is a fast pure-pixel search, or separable NMF, algorithm.D
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SISAL and MVES are nonconvex optimization-based algorithms under the MVES framework.
Following the original works, we initialize SISAL by vertex component analysis (a pure-pixel
search algorithm) [46] and initialize MVES by the solution of a convex feasibility problem
[14, problem (43)]. All the algorithms are implemented under Mathworks MATLAB R2015a,
and they were run on a computer with Core-i7-4790K CPU (3.6 GHz CPU speed) and with
16 GB RAM.

6.2. Recovery performance. Figure 5 plots the average RMS angle errors of the various
algorithms versus the (numerically controlled) pixel purity level r. As a supplementary result
for Figure 5, the precise values of the averages and standard deviations of the RMS angle errors

r r

1/
√
N − 1 1/

√
N − 1

(a) N = 3 (b) N = 4

r r

1/
√
N − 1 1/

√
N − 1

(c) N = 5 (d) N = 6

r r

1/
√
N − 1 1/

√
N − 1

(e) N = 7 (f) N = 8

Figure 5. Recovery performance of the SSMF algorithms with respect to the numerically controlled pixel
purity level r. M = 224, L = 1000, the noiseless case.
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Table 1
RMS angle error (deg.) of the various algorithms. The simulation settings are the same as those in Figure 5.

N r SPA SISAL MVES MVIE-CVX MVIE-FPGM

3
0.72 4.081±0.538 3.601±2.270 3.286±2.433 0.001±0.001 0.161±0.376
0.85 1.903±0.121 0.006±0.003 0.602±0.638 0.000±0.000 0.003±0.002

1 0.002±0.001 0.003±0.001 0.158±0.324 0.000±0.000 0.002±0.002

4
0.595 5.114±0.389 5.369±1.147 4.800±1.984 0.006±0.011 0.257±0.251
0.7 3.558±0.318 0.012±0.007 0.216±0.297 0.000±0.000 0.002±0.001
1 0.007±0.004 0.003±0.001 0.023±0.042 0.000±0.000 0.002±0.001

5
0.525 5.494±0.210 5.422±0.973 5.082±1.485 0.004±0.009 0.169±0.174
0.7 3.061±0.150 0.007±0.005 0.036±0.046 0.000±0.000 0.002±0.000
1 0.014±0.007 0.002±0.001 0.024±0.037 0.000±0.000 0.002±0.000

6
0.48 7.343±0.232 6.526±1.166 6.180±1.875 - 1.117±1.629
0.7 3.935±0.193 0.008±0.006 0.036±0.041 - 0.001±0.000
1 0.030±0.014 0.004±0.001 0.031±0.045 - 0.002±0.000

7
0.45 7.178±0.193 6.629±1.255 5.438±2.883 - 1.868±2.355
0.7 3.752±0.210 0.011±0.018 0.038±0.040 - 0.001±0.000
1 0.040±0.019 0.004±0.001 0.020±0.029 - 0.001±0.000

8
0.44 8.140±0.257 4.791±3.108 0.802±1.806 - 3.659±1.768
0.7 4.099±0.271 0.019±0.057 0.052±0.053 - 0.001±0.000
1 0.055±0.023 0.005±0.001 0.034±0.048 - 0.001±0.000

are further shown in Table 1. Let us first examine the cases of 3 ≤ N ≤ 5. MVIE-CVX achieves
essentially perfect recovery performance when the pixel purity level r is larger than 1/

√
N − 1

by a margin of 0.025. This corroborates our sufficient recovery condition in Theorem 3. We
also see from Figure 5 that MVIE-FPGM has similar performance trends. However, upon
a closer look at the numbers in Table 1, MVIE-FPGM is seen to have slightly higher RMS
angle errors than MVIE-CVX. This is because MVIE-FPGM employs an approximate solver
for the MVIE problem (Algorithm 2) to trade for better runtime; the runtime performance
will be illustrated later.

Let us also compare the MVIE algorithms and the other benchmarked algorithms, again,
for 3 ≤ N ≤ 5. SPA has its recovery performance deteriorating as the pixel purity level r de-
creases. This is expected, as separable NMF or pure-pixel search is based on the separability
or pure-pixel assumption, which corresponds to r = 1 in our simulations (with high proba-
bility). SISAL and MVES, on the other hand, are seen to give perfect recovery for a range
of values of r. However, when we observe the transition points from perfect recovery to im-
perfect recovery, SISAL and MVES appear not as resistant to lower pixel purity levels as
MVIE-CVX and MVIE-FPGM. The main reason of this is that SISAL and MVES can suffer
from convergence to local minima. To support our argument, Figure 6 gives an additional
numerical result where we use slightly perturbed versions of the groundtruth a1, . . . ,aN as
the initialization and see if MVES and SISAL would converge to a different solution. “SISAL-
cheat” and “MVES-cheat” refer to MVES and SISAL run under such cheat initializations,
resp.; “SISAL” and “MVES” refer to the original SISAL and MVES. We see from Figure 6
that the two can have significant gaps, which verifies that SISAL and MVES can be sensitive
to initializations.

Next, we examine the cases of 6 ≤ N ≤ 8 in Figure 5. For these cases we did not test
MVIE-CVX because it runs slowly for large N . By comparing the transition points fromD
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r r

1/
√
N − 1 1/

√
N − 1

(a) N = 3 (b) N = 5

Figure 6. Recovery performance of MVES and SISAL under different initializations.

(a) r = 0.55 (b) r = 0.8

Figure 7. Recovery performance of the SSMF algorithms with respect to the SNR. M = 224, N = 5, L = 1000.

perfect recovery to imperfect recovery, we observe that MVIE-FPGM is better than SISAL
and MVES for N = 6, on a par with SISAL and MVES for N = 7, and worse than SISAL
and MVES for N = 8; the gaps are nevertheless not significant.

The MVIE framework we established assumes the noiseless case. Having said so, it is
still interesting to evaluate how MVIE performs in the noisy case. Figure 7 plots the RMS
angle error performance of the various algorithms versus the signal-to-noise ratio (SNR), with
N = 5. Specifically, we add independent and identically distributed zero-mean Gaussian noise
to the data, and the SNR is defined as SNR = (

∑L
i=1 ‖xi‖2)/(σ2ML), where σ2 is the noise

variance. We observe that MVIE-CVX performs better than SISAL and MVES when r = 0.55
and SNR ≥ 25 dB; MVIE-FPGM does not work as good as MVIE-CVX but still performs
better than SISAL and MVES when r = 0.55 and SNR ≥ 35 dB. This suggests that MVIE
may work better for lower pixel purity levels.

6.3. Runtime performance. We now turn our attention to runtime performance. Table 2
shows the runtimes of the various algorithms for various N and r. Our observations are as
follows. First, we see that MVIE-CVX is slow especially for larger N . The reason is that
CVX calls an interior-point algorithm to solve the MVIE problem, and second-order methods
such as interior-point methods are known to be less efficient when dealing with problems with
many constraints. Second, MVIE-FPGM, which uses an approximate MVIE solver based onD
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Table 2
Runtimes (sec.) of the various algorithms. The simulation settings are the same as those in Figure 5.

N r SPA SISAL MVES MVIE-CVX MVIE-FPGM

3
0.72 0.008±0.008 0.288±0.011 0.285±0.244 0.613±0.044 0.031±0.016
0.85 0.008±0.008 0.282±0.009 0.803±0.569 0.466±0.039 0.034±0.028

1 0.006±0.008 0.273±0.009 1.506±0.848 0.314±0.034 0.041±0.031

4
0.595 0.009±0.008 0.323±0.010 0.766±0.759 4.112±0.213 0.106±0.048
0.7 0.009±0.008 0.316±0.010 3.327±1.593 3.579±0.202 0.042±0.019
1 0.006±0.008 0.301±0.009 5.305±1.015 1.378±0.176 0.046±0.040

5
0.525 0.010±0.008 0.371±0.009 2.228±1.825 33.115±2.362 0.514±0.105
0.7 0.012±0.005 0.359±0.009 10.528±1.955 32.642±3.149 0.441±0.180
1 0.009±0.004 0.339±0.008 11.859±1.185 10.012±1.651 0.340±0.071

6
0.48 0.016±0.003 0.444±0.010 5.303±3.920 - 2.354±0.150
0.7 0.014±0.007 0.396±0.009 19.825±1.737 - 2.229±0.321
1 0.009±0.008 0.371±0.008 20.033±1.973 - 1.220±0.130

7
0.45 0.018±0.007 0.489±0.013 11.504±6.392 - 10.648±1.113
0.7 0.017±0.005 0.426±0.011 33.706±1.946 - 19.331±0.830
1 0.011±0.009 0.402±0.009 34.006±2.790 - 7.321±0.876

8
0.44 0.021±0.008 0.549±0.021 32.663±6.465 - 77.600±8.446
0.7 0.023±0.008 0.468±0.012 67.577±2.001 - 157.313±5.637
1 0.015±0.010 0.435±0.010 60.882±4.502 - 57.613±8.386

Table 3
Detailed runtimes (sec.) of MVIE-FPGM. The simulation settings are the same as those in Figure 5.

N r
Runtime Number of facets K

MVIE-FPGM Facet enumeration FPGM+others by facet enumeration

3
0.72 0.031±0.016 0.007±0.002 0.024±0.014 44.03±3.48
0.85 0.034±0.028 0.007±0.002 0.027±0.026 29.91±3.98

1 0.041±0.031 0.007±0.002 0.035±0.030 16.12±3.12

4
0.595 0.106±0.048 0.022±0.005 0.084±0.043 365.68±17.64
0.7 0.042±0.019 0.020±0.003 0.022±0.016 318.01±18.26
1 0.046±0.040 0.012±0.004 0.034±0.035 114.62±18.49

5
0.525 0.514±0.105 0.109±0.006 0.405±0.100 2208.76±101.54
0.7 0.441±0.180 0.112±0.005 0.329±0.174 2055.93±88.57
1 0.340±0.071 0.052±0.006 0.288±0.065 764.00±102.10

6
0.48 2.354±0.150 0.663±0.039 1.691±0.111 11901.32±699.30
0.7 2.229±0.321 0.760±0.028 1.469±0.293 13064.35±511.29
1 1.220±0.130 0.345±0.036 0.875±0.094 4982.35±611.11

7
0.45 10.648±1.113 2.906±0.311 7.742±0.801 49377.95±4454.29
0.7 19.331±0.830 5.947±0.211 13.384±0.619 81631.50±3398.41
1 7.321±0.876 2.541±0.268 4.780±0.608 29448.52±4109.01

8
0.44 77.600±8.446 19.226±2.171 58.374±6.276 279720.40±29481.38
0.7 157.313±5.637 51.648±1.772 105.665±3.865 495624.59±18868.73
1 57.613±8.386 22.914±3.042 34.700±5.344 161533.59±24957.12

first-order methodology, runs much faster than MVIE-CVX. Third, MVIE-FPGM is faster
than MVES for N ≤ 7 and SISAL for N ≤ 4 but is slower than the latter otherwise.

In the previous section we discussed the computational bottleneck of facet enumeration
in MVIE. To get some ideas on the situation in practice, we show the runtime breakdown of
MVIE-FPGM in Table 3. We see that facet enumeration takes only about 10% to 33% ofD
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the total runtime in MVIE-FPGM. But there is a caveat: Facet enumeration can output a
large number of facets K, and from Table 3 we observe that this is particularly true when
N increases. Since K is the number of SOC constraints of the MVIE problem (5.3), solving
the MVIE problem for larger N becomes more difficult computationally. While the main
contribution of this paper is to introduce a new theoretical SSMF framework through MVIE,
as a future direction it would be interesting to study how the aforementioned issue can be
mitigated.

7. Conclusion and discussion. In this paper we have established a new SSMF framework
through analyzing an MVIE problem. As the main contribution, we showed that the MVIE
framework can admit exact recovery beyond separable or pure-pixel problem instances and
that its sufficient exact recovery condition is as good as that of the MVES framework. How-
ever, unlike MVES, which requires one to solve a nonconvex problem, the MVIE framework
suggests a two-step solution, namely, facet enumeration and convex optimization. The viabil-
ity of the MVIE framework was shown by numerical results, and it was illustrated that MVIE
exhibits stable performance over a wide range of pixel purity levels. Furthermore, we should
mention three open questions arising from the current investigation:

• How can we make facet enumeration more efficient in the sense of generating fewer
facets, thereby improving the efficiency of computing the MVIE? In this direction
it is worthwhile to point out the subset-separable NMF work [28] which considers a
similar facet identification problem but operates on rather different sufficient recovery
conditions.
• How can we handle the MVIE computations efficiently when the number of facets,

even with a better facet enumeration procedure, is still very large? One possibility is
to consider the active set strategy, which was found to be very effective in dealing with
the minimum volume covering ellipsoid (MVCE) problem [49, 32]. While the MVCE
problem is not identical to the MVIE problem, it will be interesting to investigate how
the insights in the aforementioned references can be used in our problem at hand.
• How should we modify the MVIE formulation in the noisy case such that it may offer

better robustness to noise—both practically and provably?
We hope this new framework might inspire more theoretical and practical results in tackling
SSMF.

Appendix A. Proof of Proposition 1.
We will use the following results.

Fact 3. Let f(α) = Φα+ b, where (Φ, b) ∈ Rm×n×Rm and Φ has full column rank. The
following results hold.

(a) Let C be a nonempty set in Rm with C ⊆ A(Φ, b). Then

rbd(f−1(C)) = f−1(rbd C).

(b) Let C1, C2 be sets in Rm with C1, C2 ⊆ A(Φ, b). Then

C1 ⊆ C2 ⇐⇒ f−1(C1) ⊆ f−1(C2).

The results in the above fact may be easily deduced or found in textbooks.D
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First, we prove the feasibility results in statements (a)–(b) of Proposition 1. Let (F , c) be
a feasible solution to problem (3.2). Since

E(F , c) ⊆ X ⊆ aff{x1, . . . ,xL} = A(Φ, b),

it holds that
fi + c = Φαi + b, i = 1, . . . , N, c = Φc′ + b,

for some α1, . . . ,αN , c
′ ∈ RN−1. By letting f ′i = αi − c′, i = 1, . . . , N , one can show that

F ′ = [ f ′1, . . . ,f
′
N ] and c′ are uniquely given by (F ′, c′) = (Φ†F ,Φ†(c− b)). Also, by letting

f(α) = Φα+ b, it can be verified that

f−1(E(F , c)) = E(F ′, c′).

Similarly, for X , we have xi ∈ X ⊆ A(Φ, b). This means that xi can be expressed as
xi = Φx′i + b for some x′i ∈ RN−1, and it can be verified that x′i is uniquely given by
x′i = Φ†(xi − b). Subsequently, it can be further verified that

f−1(X ) = X ′.

Hence, by using Fact 3(b) via setting C1 = E(F , c), C2 = X , we get E(F ′, c′) ⊆ X ′. Thus,
(F ′, c′) is a feasible solution to problem (4.4), and we have proven the feasibility result in state-
ment (a) of Proposition 1. The proof of the feasibility result in statement (b) of Proposition
1 follows the same proof method, and we omit it for brevity.

Second, we prove the optimality results in statements (a)–(b) of Proposition 1. Let (F , c)
be an optimal solution to problem (3.2); (F ′, c′) be equal to (Φ†F ,Φ†(c−b)), which is feasible
to problem (4.4); and vopt be the optimal value of problem (3.2). Then we have

vopt = det(F TF ) = det((F ′)TΦTΦF ′) = | det(F ′)|2 det(ΦTΦ) ≥ v′opt det(ΦTΦ),

where v′opt denotes the optimal value of problem (4.4). Conversely, by redefining (F ′, c′)
as an optimal solution to problem (4.4) and (F , c) = (ΦF ′,Φc′ + b) (which is feasible to
problem (3.2)), we also get

v′opt = |det(F ′)|2 =
1

det(ΦTΦ)
det(F TF ) ≥ 1

det(ΦTΦ)
vopt.

The above two equations imply vopt = v′opt det(ΦTΦ), and it follows that the optimal solution
results in statements (a)–(b) of Proposition 1 are true.

Third, we prove statement (c) of Proposition 1. Recall from (3.1) that dimX = N − 1
(also recall that the result is based on the premise of (A2)–(A3)). From the development
above, one can show that

X = {Φx′ + b | x′ ∈ X ′}.
It can be further verified from the above equation and the full column rank property of Φ
that dimX ′ = dimX = N − 1 must hold. In addition, as a basic convex analysis result, a
convex set C in Rm has nonempty interior if dim C = m. This leads us to the conclusion that
X ′ has nonempty interior.D
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Finally, we prove statement (d) of Proposition 1. The results therein are merely appli-
cations of Fact 3, e.g., C1 = {q}, C2 = E for q ∈ E =⇒ q′ ∈ E ′, C1 = {q}, C2 = rbd X for
q ∈ rbd X =⇒ q′ ∈ rbd(f−1(X )) = bd X ′, and so forth.

Appendix B. Fast proximal gradient algorithm for handling problem (5.3).
In this appendix we derive a fast algorithm for handling the MVIE problem in (5.3). Let

us describe the formulation used. Instead of solving problem (5.3) directly, we employ an
approximate formulation as

(B.1) min
F ′∈SN−1

+ ,c′∈RN−1
− log det(F ′) + ρ

K∑
i=1

ψ(‖F ′gi‖+ gTi c
′ − hi)

for a prespecified constant ρ > 0 and for some convex differentiable function ψ : R→ R such
that ψ(x) = 0 for x ≤ 0 and ψ(x) > 0 for x > 0; specifically, our choice of ψ is the one-sided
Huber function, i.e.,

ψ(z) =


0, z < 0,
1
2z

2, 0 ≤ z ≤ 1,

z − 1
2 , z > 1.

Our approach is to use a penalized, or “soft-constrained,” convex formulation in place of
problem (5.3), whose SOC constraints may not be easy to deal with as “hard constraints.”
Problem (B.1) has a nondifferentiable and unbounded-above objective function. To facilitate
our algorithm design efforts later, we further approximate the problem by

(B.2) min
F ′∈W,c′∈RN−1

− log det(F ′) + ρ
K∑
i=1

ψ(
√
‖F ′gi‖2 + ε+ gTi c

′ − hi)

for some small constant ε > 0, where W , {W ∈ SN−1 | λmin(W ) ≥ ε}.
Now we describe the algorithm. We employ the fast proximal gradient method (FPGM) or

FISTA [6], which is known to guarantee a convergence rate of O(1/k2) under certain premises;
here, k is the iteration number. For notational convenience, let us denote n = N−1, W = F ′,
y = c′, and rewrite problem (B.2) as

min
W∈Rn×n

y∈Rn

K∑
i=1

ψ
(√
‖Wgi‖2 + ε+ gTi y − hi

)
︸ ︷︷ ︸

,f(W ,y)

+ IW(W )− 1

ρ
log det(W )︸ ︷︷ ︸

,g(W )

,(B.3)

where IW(·) is the indicator function ofW. By applying FPGM to the formulation in (B.3), we
obtain Algorithm 2. In the algorithm, the notation 〈·, ·〉 stands for the inner product, ‖ ·‖ still
stands for the Euclidean norm, ψ′ is the differentiation of ψ, and proxf (z) = arg minx

1
2‖z −

x‖2+f(x) is the proximal mapping of f . The algorithm requires computations of the proximal
mapping proxtg(W − t∇W f). The solution to our proximal mapping is described in the
following fact.D
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Algorithm 2. FPGM for Solving Problem (B.3).

1: Given ε > 0, ρ > 0, (gi, hi)
K
i=1, tmax > 0, α ≥ 1, β ∈ (0, 1), and a starting point

(W ,y) ∈ W × Rn.
2: Set k := 1, u0 = 0, (W 0,y0) = (W ,y), t := tmax.
3: repeat

4: ∇W f :=
∑K

i=1
ψ′(
√
‖Wgi‖2+ε+gTi y−hi)√
‖Wgi‖2+ε

(Wgig
T
i );

5: ∇yf :=
∑K

i=1 ψ
′(
√
‖Wgi‖2 + ε+ gTi y − hi) gi;

6: t := αt;
7: W k := proxtg(W − t∇W f), yk := y − t∇yf ;
8: % line search
9: while f(W k,yk) > f(W ,y) + 〈(∇W f,∇yf), (W k,yk) − (W ,y)〉 + 1

2t‖(W k,yk) −
(W ,y)‖2 do

10: t := βt;
11: W k := proxtg(W − t∇W f), yk := y − t∇yf ;
12: end while
13: uk = 1

2

(
1 +

√
1 + 4u2

k−1

)
;

14: (W ,y) := (W k,yk) +
uk−1−1
uk

(
(W k,yk)− (W k−1,yk−1)

)
;

15: k := k + 1;
16: until a prespecified stopping rule is satisfied.
17: Output (W k−1,yk−1).

Fact 4. Consider the proximal mapping proxtg(V ), where the function g has been defined

in (B.3) and t > 0. Let Vsym = 1
2(V + V T ), and let Vsym = UΛUT be the symmetric

eigendecomposition of Vsym, where U ∈ Rn×n is orthogonal and Λ ∈ Rn×n is diagonal with
diagonal elements given by λ1, . . . , λn. We have

proxtg(V ) = UDUT ,

where D ∈ Rn×n is diagonal with diagonal elements given by di = max{λi+
√
λ2i +4t/ρ

2 , ε},
i = 1, . . . , n.

The proof of the above fact will be given in Appendix B.1. Furthermore, we should mention
convergence. FPGM is known to have a O(1/k2) convergence rate if the problem is convex
and f has a Lipschitz continuous gradient. In Appendix B.2, we show that f has a Lipschitz
continuous gradient.

B.1. Proof of Fact 4. It can be verified that for any symmetric W , we have ‖V −W ‖2
= ‖Vsym −W ‖2 + ‖1

2(V − V T )‖2. Thus, the proximal mapping proxtg(V ) can be written as

(B.4) proxtg(V ) = arg min
W∈W

1

2
‖Vsym −W ‖2 −

t

ρ
log det(W ).
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Let Vsym = UΛUT be the symmetric eigendecomposition of Vsym. Also, let W̃ = UTWU ,
and note that W ∈ W implies W̃ ∈ W. We have the following inequality for any W ∈ W:

1

2
‖Vsym −W ‖2 −

t

ρ
log det(W ) =

1

2
‖Λ− W̃ ‖2 − t

ρ
log det(W̃ )

≥
n∑
i=1

1

2
(λi − w̃ii)2 − t

ρ
log(w̃ii)

≥
n∑
i=1

min
w̃ii≥ε

[
1

2
(λi − w̃ii)2 − t

ρ
log(w̃ii)

]
,(B.5)

where the first equality is due to rotational invariance of the Euclidean norm and determinant,
the second inequality is due to ‖Λ − W̃ ‖2 ≥ ∑n

i=1(λi − w̃ii)2 and the Hadamard inequality
det(W̃ ) ≤ ∏n

i=1 w̃ii, and the third inequality is due to the fact that λmin(W̃ ) ≤ w̃ii for all i.
One can readily show that the optimal solution to the problem in (B.5) is w̃?ii = max{(λi +√
λ2
i + 4t/ρ)/2, ε}. Furthermore, by letting W ? = UDUT , D = Diag(w̃?11, . . . , w̃

?
nn), the

equalities in (B.5) are attained. Since W ? also lies inW, we conclude that W ? is the optimal
solution to the problem in (B.4).

B.2. Lipschitz continuity of the gradient of f . In this appendix we show that the func-
tion f in (B.3) has a Lipschitz continuous gradient. To this end, define z = [(vec(W ))T , yT ]T

and
φi(z) =

√
‖Ciz‖2 + ε+ dTi z − hi, i = 1, . . . ,K,

where Ci = [(gTi ⊗ I), 0] (here “⊗” denotes the Kronecker product) and di = [0T , gTi ]T .
Then, f can be written as f(W ,y) =

∑K
i=1 ψ(φi(z)). From the above equation, we see that

f has a Lipschitz continuous gradient if every ψ(φi(z)) has a Lipschitz continuous gradient.
Hence, we seek to prove the latter. Consider the following fact.

Fact 5. Let ψ : R→ R, φ : Rn → R be functions that satisfy the following properties:
(a) ψ′ is bounded on R, and ψ has a Lipschitz continuous gradient on R.
(b) ∇φ is bounded on Rn, and φ has a Lipschitz continuous gradient on Rn.

Then, ψ(φ(z)) has a Lipschitz continuous gradient on Rn.

As Fact 5 can be easily proved from the definition of Lipschitz continuity, its proof is omitted
here for conciseness. Recall that for our problem, ψ is the one-sided Huber function. One can
verify that the one-sided Huber function has bounded ψ′ and Lipschitz continuous gradient.
As for φi, let us first evaluate its gradient and Hessian

∇φi(z) =
CT
i Ciz√

‖Ciz‖2 + ε
+ di,

∇2φi(z) =
CT
i Ci√

‖Ciz‖2 + ε
− (CT

i Ciz)(CT
i Ciz)T

(‖Ciz‖2 + ε)3/2
.(B.6)

We have

‖∇φi(z)‖ ≤ ‖di‖+
‖CT

i Ciz‖√
‖Ciz‖2 + ε

≤ ‖di‖+
σmax(Ci)‖Ciz‖√
‖Ciz‖2 + ε

≤ ‖di‖+ σmax(Ci),
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where σmax(X) denotes the largest singular value of X. Hence, ∇φi(z) is bounded. Moreover,
recall that a function has a Lipschitz continuous gradient if its Hessian is bounded. We have

‖∇2φi(z)‖ ≤
√
n+ n2λmax(∇2φi(z)) ≤

√
n+ n2λmax

(
CT
i Ci√

‖Ciz‖2 + ε

)

≤
√
n+ n2λmax(CT

i Ci)√
ε

,

where the first inequality is obtained by the facts that ‖A‖ ≤ mλmax(A) for any PSD A ∈ Sm
and that ∇2φi(z) is PSD (due to the convexity of φi), and the second inequality is due to
(B.6). Thus, the function φi has a Lipschitz continuous gradient. Thus, the desired result is
therefore proven.
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